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LYAPUNOV STABILITY CONDITIONS FOR RELATIVISTIC MULTIFLUID PLASMA 
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The Hamiltonian structure is given for ideal relativistic multifluid plasma dynamics in the laboratory frame with the 
Hamiltonian functional equaling the relativistic energy minus the mass energy. The noncanonical Poisson bracket for this 
system turns out to be the same as for the nonrelativistic multifluid plasma, but with dynamical variables replaced by their 
relativistic counterparts. New constants of the motion are then derived from the Hamiltonian structure and used as Lyapunov 
functionals for proving sufficient conditions for nonlinear stability of relativistic multifluid plasma equilibria. The nonrelativis- 
tic limit of the formulation is uniformly regular, and nonlinear Lyapunov stability conditions derived previously for a 
nonrelativistic multifluid plasma reemerge in that limit. 

I. Introduction 

As shown in [1, 2], the (special) relativistic Ham- 
iltonian formalism of ideal fluid dynamics is a 
regular, structure-preserving deformation of the 
nonrelativistic theory with parameter c-2 where c 
is the speed of light. This regularity allows the 
extension of the Hamiltonian methods for 
Lyapunov stability analysis [3-5] to the relativistic 
case. Using this type of stability analysis, we de- 
duce sufficient conditions for Lyapunov stability 
of relativistic multifluid plasmas (MFP) which limit 
(as c-2 tends to zero) to the corresponding condi- 
tions for the nonrelativistic case, treated in [4]. 
This result is illustrated for planar barotropic MFP, 
but it also holds in three dimensions and for 
ordinary compressible fluids without electromag- 
netic fields. For the planar case, the stability con- 
dition we obtain generalizes Rayleigh's classical 
inflection point criterion for stability of planar 
incompressible fluids, to the case of compressible 
relativistic plasmas. 

An evolutionary system for variables ~k(x, t) is 
a Hamiltonian system if it can be expressed as 
0tqJ = {H, if} for some Hamiltonian H(~k) and 
Poisson bracket { . , .  }, which is bilinear, skew- 
symmetric, and satisfies the Jacobi identity. An 

equilibrium solution ~e(x) is Lyapunov stable in 
the norm II" II, if for every c > 0 there is a 8 > 0 
such that for each solution ~ = ~¢ + 8~k ($q~ is a 
perturbation) satisfying 118qdl > 8 at some initial 
time, the norm of the perturbation satisfies 118q, II 
< ( for all subsequent time (assuming the solution 
continues to exist). 

The search for an appropriate norm I1" II for 
Lyapunov stability is facilitated by having an 
evolutionary system in Hamiltonian form for which 
the Poisson bracket admits Casimir functions C, 
such that (C, F } = 0 for all F(q~). Note that H 
and H + C generate the same evolution under the 
Poisson bracket, if C is a Casimir. If H c .'= H + C 
has a critical point for a certain equilibrium flow, 
i.e., 8Hc(q% ) = DHc(gge).8 ~ = 0, then the second 
variation 

will be preserved by the linearized motion at ~ke- 
This happens because ~ 82 Hc(~pe ) is the Hamilto- 
nian for the linearized evolution of infinitesimal 
perturbations, 8~k, as a Hamiltonian system in 
terms of the Poisson bracket linearized at ~p~ [5]. If 
82Hc(q% ) is definite in sign for a certain equi- 
librium, then conservation of the norm defined by 
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II&kll 2 = 32Hc(~e)  expresses Lyapunov stability of 
the equilibrium solution, under the linearized 
evolution of perturbations. If, in addition, H c ( r e  
+ 3if) is convex in the sense discussed in [3-5] for 
finite 36,  then quadratic forms that bound the 
conserved quantity 

f t  c = Hc (  +¢ + 3~ ) - Hc(~pe ) - DHc(  ~e ) .3~  

also define a norm expressing Lyapunov stability 
of the equilibrium ~Pe for finite amplitude per- 
turbations, i.e., then nearby displacements from 
equilibrium remain nearby, under the nonlinear 
evolution of the system, in the sense of the norm 
constructed from the bounds on /tc- Usually, the 
Casimirs C contain arbitrary functions, which de- 
termine classes of equilibria as critical points of 
H c. The properties of stable equilibria (i.e., the 
stability conditions) are then defined in terms of 
conditions on these functions. 

The Lyapunov method generally gives sufficient 
conditions for stability, so if the quantity 32Hc(~e) 
is indefinite for some equilibrium flow, there is 
logically no implication about instability. How- 
ever, in some cases [6] the loss of Lyapunov stabil- 
ity as the equilibrium properties change signals the 
onset of either instability, or some other interest- 
ing process, such as Arnold diffusion. Alterna- 
tively, the lack of this type of stability criterion in 
some cases results because the original problem is 
ill-posed [7]. 

2. Multifluid plasma (MFP) 

As shown in [1, 2], relativistic fluid dynamics is 
a regular, structure-preserving deformation of the 
nonrelativistic theory. In particular, for MFP the 
nonrelativistic stability criteria, being a set of in- 
equalities, should be regularly deformed under rel- 
ativisation. We illustrate this for barotropic MFP 
flows in a domain D c R  2 in the x , y  plane. 
Analogous methods and conclusions apply in three 
dimensions for adiabatic MFP. 

The physical variables in the laboratory frame 
are (suppressing species indices): p, mass density; 

N, fluid momentum density; E, electric field; and 
B, magnetic field. For the motion to remain planar, 
each of the dependent variables ( p, N, E, B } must 
be functions only of (x, y, t); N and E must lie in 
the x, y plane; and B = B e  must be directed 
normally to the plane, along ~. The velocity v is 
related to momentum density by v = N / T w  p where 
"y = ( 1 -  1)2/C2) -1/2 is  the relativistic factor and 
w = l + ( e  o + P o / p o ) / c  2, with subscript 0 for 
quantities defined in the rest frame of the fluid, 
such as internal energy e0, pressure Po, and rest 
mass density P0- 

The planar MFP equations are 

OtB = - ~ • curl E = E l ,  2 - E2, l, 

cgtE= V B  X ~. - Y~.apv, 

~tP = - divpv, 

Ot( ywv  ) = v × B*e + aE - W( wc2"~ ), 

where B* .'= ~. curl(-/wv) + aB, the parameter a 
is the species charge-to-mass ratio, and Y. indicates 
summation over species, with species indices 
supressed. The static Maxwell equations, 

d ivB = 0, d ivE - Y'~ao = O, 

are preserved by the dynamics, if they are assumed 
to be initially satisfied. 

The Hamiltonian structure for the relativistic 
M FP  equations is contained in [2] and [8]. For 
functionals I, J of ( p ,  N ,  E ,  B }, the Poisson 
bracket (1, J } is given by 

( i , j } = _ ~ f d x d y { 3 J , . 3 _ o o a l V ~  31~ 

3J 31 
+ + OjN,) 

3J 3I 3J 31 
- a p B f  " ~  X ~ + aP 3E . 3N 

+g-~. o~'v-ao- ~ 

+ f d x d y [ ~ - ' c u r l ( ~ - ~ z ) 3 1 ^  

3J ^ 3I ] 
- ~ z  curl 3-~ ]. (1) 
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Using the relativistic energy as the Hamiltonian, 

H =  ~ f dxdy[c2(~lNl:/c:+(Ow) E - p ) - P o ]  

+ fdxdy [½1El E + ½BE], (2) 

and the identities C2poOw/Opo = OPo/OPo, ~H/SN 
= v, 8H/Sp = cE(wy - 1 -  1), 8H/SE=E,  8H/SB 
= B, the MFP  equations can be immediately re- 
covered from O,~ = { H, ~b } for ~b ~ { p, N, E, B } 
using (1). In [2] this Hamiltonian structure is shown 
to limit smoothly to the nonrelativistic case as c-2 
tends to zero. This regular behavior enables us to 
calculate the relativistic extension of the stability 
analysis in [4]. 

We observe that the conserved quantities 

CF= f dxdypF(B*/p), (3) 

where B* = ~. curl(ywv) + aB, are Casimirs for 
the Poisson bracket (1). 

The stationary flows Pe' Ve, E~, B e, satisfy 

ve×B*e=-aEe+V(C2WeYe), E e = -  Vdp, (4) 

VB e X ~ = Y]aPeVe, divPeV e = 0, (5) 

from which it follows that 

v~.v(cZwey¢+aep)=O, v¢.V(B*/pe)=O, (6) 

Substitution of (7) into (5) gives 

a . 
V ne  = -- E Be*l/Pc ~Irg( ne IPe)" (9) 

With these relations, one quickly establishes that 
6H c = 0 for stationary flows when H c = H + XC r. 
By this definition, we set 

I-Ic=Z fodxdy[c2[~lWl2/c2+(pw)2-p] 

- Po + p F ( B * / p )  + XB*] 
+ f dxdy[½1EI2+½B: 
+ ~ ( x ) ( -  d i v e  + S a p ) ] ,  (10) 

where h is a constant. Using y w v =  N/p and 
integrating by parts, we find 

8Hc= fodxdy { ~ ( v -  p-~x ~TF').SN 

+ [ B +  ~_,a(F'+h)]~B 

+ ~ . [ c 2 ( ~ - I ) + a ~ + F - ( B * / p ) F  ' 

+ Y'.(~D(haa + F ' ) 8 ( N / p ) .  dl, (11) 

where ~ (x )  is the electrostatic potential. We take 
the relations (6) to mean that there exists a func- 
tional dependence c2w~3,~ + aq~ = K(B*/p~) for a 
certain function K(B*/pe) for each species. Thus, 
v~ × B ~  = ~TK( B*/p~) and consequently, 

K'(S*/pe) 
P~Ve B*/pe Z × V(B*/Pe) (7) 

where 8 ( N / p ) . ' =  p-1 8N - Np -2 8p, the line ele- 
ment on the boundary is dl, and we have neglected 
an electrostatic boundary term of no consequence. 
The first variation (11) vanishes by the stationary 
relations (4)-(7) provided the function K(~) 
satisfies 

K +  F -  ~ F ' ( ~ )  = 0 ,  (12) 

and or, equivalently, 

K'( Bg/po) = Oove" e × V( B*/pe) (8) *K(q) + const), r(,)=,(f ~ d q  (13) 
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where the constant c 2 has been absorbed into K. 
Then, each coefficient vanishes in the interior of D 
and the boundary term vanishes by choosing ~ + 
F'(B*/R¢)I 0o = 0, since B*/Re is constant on the 
boundary; by (6) and the boundary conditions 
v • h = 0, where h is the unit normal vector on the 
boundary. Thus, H c has a critical point for sta- 
tionary flows when the Casimir function F is 
determined by (13). 

Calculation of the second variation of H c gives, 
using 0 = ( N 2 / c  2 + ( w R ) 2 )  1/2 = WRy , 

8 2Hc = D2Hc( Ne, Re, Ee, Be)" (SN, SO, BE, 8B) 2 

=E f dxdy{OjllSNI 2 

+ PeF"(B*/Re)[8(B*/p)] 2 

+(8p)2[0(¢2W//)t) 21NI 2 ] 
OR P 20 e 

+ 28RNe'SN[(R01-1 

O(c2w/y) 1 0_2 00 ] 
+ OlNI 2 2 00 e 

[ oo]) 
+ ( N  e • 8 N ) 2  _ 20_2 01NI - - - -5  e 

+ f dx d y [18£12 + (8B)2]. (14) 

In the nonrelativistic limit, (14) reduces to the 
quadratic form in [4] which was shown to be 
positive definite, provided the equilibrium flow is 
everywhere subsonic and F"(B~*/Re) > 0, or 
equivalently [by (8) and (13)], v~. £ x IT(Be*/R~) 
>0.  

in the relativistic case, the second variation (14) 
is positive definite and, hence, the corresponding 
equilibrium flow is linearly Lyapunov stable, when 
the following sufficient conditions are satisfied for 

each species: 

0o>0, (15) 

( e/o)= F" 8" R Peve" e X V(~*/po) 
IV,(B./Re) i= >0,  (16) 

[ 0(c2w/3'),90 212121020 ~->0' (17) 

Olvel 2 
~INol------ 5 >_ 0, (18) 

OlNI 2 0p 020 

>_ + 0INI 2 "~0 -2 (19) 

Condition (15) is the physical condition of positive 
mass density, which implies 0 e > 0, as well. Condi- 
tion (16) is the geometrical condition that 
ve, ~, V(B*/pe)  form a right-handed triad. Condi- 
tion (17) is the relativistic subsonic condition for 
each species. Condition (18) requires that the mag- 
nitude of each species velocity be an increasing 
function of the corresponding momentum density. 
Lastly, the condition (19) represents an additional, 
essentially-relativistic requirement for stability, 
which is not present in the nonrelativistic case (in 
the nonrelativistic limit, (19) reduces to the trivial 
inequality 0 > 0). Details of the calculations out- 
lined here and explicit applications of the stability 
conditions (15)-(19) are given in [9]. In the case of 
plane-parallel relativistic flow, the stability condi- 
tion (16) generalizes Rayleigh's classical inflection 
point criterion for stability of planar flow of an 
incompressible fluid to the problem of relativistic 
charged flow in a planar diode with applied mag- 
netic field. 

The relativistic functional H c in (10) can be 
made convex in the sense of [3-5] for sufficiently 
small c-2; this is again because relativisation of 
fluid dynamics is a regular deformation. Therefore, 
solutions satisfying the relativistic stability criteria 
(17)-(19) and F"(~)> a > 0 for all ~ and con- 
stant a, are nonlinearly Lyapunov stable, i.e., are 
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stable for finite amplitude perturbations, for suffi- 
ciently small c -z. 
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